
CLHEP Infrastructure Improvements

L. Garren, FNAL, Batavia, IL 60510, USA

Abstract
CLHEP is a set of HEP-specific foundation and utility

classes such as random number generators, physics vectors,
and particle data tables. Although CLHEP has traditionally
been distributed as one large library, the user community
has long wanted the ability to build and use CLHEP pack-
ages separately.

With the release of CLHEP 1.9, CLHEP has been reor-
ganized and enhanced to enable building and using CLHEP
packages individually as well as collectively. The revised
build strategy employs all the components of the standard
autotools suite: automake, autoconf, and libtool. In combi-
nation with the reorganization, the use of these components
makes it easy not only to rebuild any single package (e.g.,
when that package changes), but also to add new packages.

INTRODUCTION
CLHEP [1] contains a number of Hep-specific C++

packages, which include Vector, Random, Matrix,
HepPDT, HepMC, and other useful classes. CLHEP is used
by Geant4, ThePeg [2], and many individual HEP experi-
ments.

CLHEP has traditionally been distributed as one large
software package that builds one large library. However,
some packages are updated more frequently than the com-
plete CLHEP release and users may wish to get single
package updates. Also, some users want only some of the
CLHEP packages.

CHANGES TO CLHEP
As agreed at the 2003 CLHEP Workshop [3], separate

builds of each CLHEP package have been enabled. This
requires each package to have a configure file, all necessary
build scripts, and some knowledge of the other packages it
might depend on. Building the entire CLHEP library is still
the default option, but the full package build now uses the
infrastructure in each package.

Backwards compatibility with CLHEP 1.8.x is required,
but only for the first release (1.9.x) of the newly reconfig-
ured CLHEP.

Code Structure
Table 1 shows the changes to the source

code structure. CLHEP headers are invoked as
”CLHEP/package/myheader.h”. Note that this does
not match the source code directory structure. The install

step creates an include/CLHEP header tree under the
install directory. Since this tree is not present when build-
ing the libraries, we create a temporary header directory
during the build process.

Other Changes to CLHEP

C++ namespaces are now in use within all CLHEP
packages. If the package had no other defined names-
pace, the CLHEP namespace was added. When back-
wards compatibility is enabled, headers will contain rele-
vant ”using namespace” statements, so that namespace
use is transparent to users.

Exception handling packages Exceptions, Cast, and
Refcount have been added. These packages are disabled
by default.

The Geometry package has been substantially rewritten.
Several other packages have been updated.

USING AUTOTOOLS

The CLHEP build scripts and makefiles were almost
completely rewritten to take advantage of the power of au-
totools. The support of various operating system and com-
piler configurations by the CLHEP maitainer requires re-
cent versions of the autotools suite: autoconf 2.59 [4] or
later, automake 1.9.1 [5] or later, and libtool 1.9b [6] or
later. However, neither installation nor use of CLHEP re-
quires any of the autotools.

Maintainer bootstrap proceedures invoke aclocal, au-
toheader, automake, and autoconf. Autoconf creates a
configure script from the configure.in instructions and
the aclocal.m4 instructions generated by aclocal. Au-
toheader creates the template defs.h.in configuration file
from instructions found in configure.in. Automake creates
template Makefile.in’s from very simple Makefile.am’s.
Libtool is used by the generated makefiles to build both
static and shared libraries.

Each package contains various Makefile.am files, a con-
figure.in, and a bootstrap file which runs the autotools.
Usually only code developers need to bootstrap. Source
code tarballs are available for user installation.

configure.in

The instructions in configure.in provide the basis for
configure, the Makefiles, defs.h, and other generated files.
This section describes a few interesting autoconf com-
mands.

Table 1: Changes to CLHEP Code Structure
Old New

*.hh, *.h, *.icc CLHEP/package CLHEP/package/package
*.cc CLHEP/package CLHEP/package/src
documentation CLHEP/package/doc CLHEP/package/doc
validation tests CLHEP/test CLHEP/package/test

AC_INIT(CLHEP Vector,1.9.1.1,CLHEP@cern.ch)

declares this as the CLHEP Vector package. The package
version is 1.9.1.1, and mail about the package should be
sent to CLHEP@cern.ch.
AM_CONFIG_HEADER(Vector/defs.h) tells autoconf

that we will create a configuration header named defs.h in
the Vector subdirectory. configure.in contains boilerplate
for defs.h. Backwards compatibility is enabled if the ap-
propriate lines are included, as illustrated in Table 2.

Files which will be generated from *.in files are
specified with the AC CONFIG FILES command:
AC_CONFIG_FILES([Vector/Makefile]). Makefiles
are generated in two steps from Makefile.am files. First,
automake generates Makefile.in using Makefile.am and
the instructions in configure.in. Then, the configure script
generates the final Makefile.

The C++ compiler is chosen from the list in
AC_PROG_CXX(cl g++ c++ aCC CC cxx cc++) and
AC_LANG(C++) tells configure that C++ is the default
compiler. AM_CXXFLAGS is set according to the chosen
compiler and operating system, as shown in Table 3. After
AM_CXXFLAGS is defined, AC_SUBST(AM_CXXFLAGS)must
be called.

Autoconf has tests available for most C++ deficien-
cies. For instance, AC_CHECK_HEADERS([sstream])

will check for the sstream header and
AC_CHECK_TYPES([ptrdiff_t]) will verify that
ptrdiff_t is available.
AC_OUTPUT signals the end of configure.in.

Makefiles

Each buildable directory, including the header directory,
contains a Makefile.am.
CLHEP/package/Makefile.am contains a list of subdi-

rectories (SUBDIRS) to build when ”make” is invoked
and a list of subdirectories that should be distributed
(DIST_SUBDIRS). These lists are often different. Because
defs.h must be created and then copied into a temporary
header directory tree, the SUBDIRS list for a package is
”package . src test”. Automake recognizes a number
of local targets which can be defined by the user. The
all-local target builds the temporary header tree by invok-
ing another target in the header subdirectory of packages
needed for the build.
CLHEP/package/package/Makefile.am, in the header

directory, contains the rule to copy headers for this pack-
age into the temporary header tree. Each header file is indi-

vidually listed in pkginclude_HEADERS. Note that defs.h
must also be mentioned in the pkginclude_HEADERS list.
CLHEP/package/src/Makefile.am, is very sim-

ple. It contains only three directives. The source
code Makefile.am defines INCLUDES (where to find
headers), lib_LTLIBRARIES (the library name),
and libCLHEP_Vector_@VERSION@_la_SOURCES.
Each source code file must be explicitly listed in
libCLHEP_Vector_@VERSION@_la_SOURCES.

Autoconf produces a Makefile.in from each Make-
file.am, and configure processes the Makefile.in files to
generate a Makefile tailored for the specified operating sys-
tem and compiler.

BUILDING CLHEP
Users should start by downloading and unwinding a

CLHEP source code tarball. The build proceedures expect
you to create a separate build directory and to identify an
installation directory. The default installation directory is
/usr/local. Building documents is a separate step since this
is not always either feasible or desired.

• cd build-directory

• .../CLHEP/configure

--prefix=/fullpath/installdir [options]

• make

• make check

• make install

• make docs

• make install-docs

The same steps are used to update or
build a single package, with the exception
that you call the package’s configure script:
.../CLHEP/package/configure [options].

Useful configure options include:

• CXX=xyz (set the C++ compiler)
• CXXFLAGS="some stuff"

(append compiler flags to those defined in configure)
• --disable-shared (build only static libraries)
• --enable-exceptions

(use the Exceptions package)
• --help

It is often necessary to define both the C++ compiler
(CXX) and the C compiler (CC). Using environmental vari-
ables, e.g., to set CXX, is not recommended.

Table 2: defs.h boilerplate from configure.in
AH_TOP([#ifndef VECTOR_DEFS_H

#define VECTOR_DEFS_H])

...

backwards compatibility

AH_VERBATIM([ENABLE_BACKWARDS_COMPATIBILITY],

[/* backwards compatibility will be enabled ONLY in CLHEP 1.9 */

#ifndef ENABLE_BACKWARDS_COMPATIBILITY

#define ENABLE_BACKWARDS_COMPATIBILITY

#endif])

AH_BOTTOM([#endif // VECTOR_DEFS_H])

Table 3: defs.h boilerplate from configure.in
case "$CXX" in

g++)

case "$target" in

--linux*) AM_CXXFLAGS="-O -ansi -pedantic -Wall -D_GNU_SOURCE";;

*) AM_CXXFLAGS="-O -ansi -pedantic -Wall"

esac;;

cl) AM_CXXFLAGS="-EHsc";;

*) echo UNEXPECTED CHOICE OF C++ COMPILER: $CXX

esac

CLHEP UTILITIES

CLHEP contains several new utility scripts: clheplib,
clhep-config, and package-config. clheplib will list
the library path and library name for use when linking.

• clheplib

-L/fullpath/lib

-lCLHEP-1.9.1.1

• clheplib HepMC

-L/fullpath/lib

-lCLHEP-HepMC-1.9.1.1

-lCLHEP-Geometry-1.9.1.1

-lCLHEP-HepPDT-1.9.1.1

clhep-config and package-config provide informa-
tion about the compiler, compiler flags, etc. Use --help to
view the list of options.

CLHEP RELEASES

There are presently two concurrent releases: CLHEP
1.9.x and CLHEP 2.0.x.

CLHEP 1.9.x is fully backwards compatible.
The headers in this release contain relevant ”using
namespace” statements. This release also contains
CLHEP/config/CLHEP.h and code to support gcc 2.95.2.

CLHEP 2.0.x is identical to 1.9.x, but without backwards
compatibility. There is no CLHEP/config package. All
configuration information is in the defs.h header found in
each package. The defs.h headers are also present in 1.9.x.

Major changes to CLHEP source will appear in CLHEP
2.1.

Supported Compilers

Gcc 3.3 is supported on all platforms. Gcc 3.4 has been
tested, but is not yet officially supported. Gcc 2.95.2 is
supported only for backwards compatibility. Other actively
supported compilers are Solaris CC 5.4, and Windows Vi-
sualC++ 7.1. CLHEP must be compiled under cygwin on
a Windows machine, but you do not need to invoke cygwin
to use the libraries. Instructions for building under cygwin
are in CLHEP/ReadMe.cygwin-VC71.

CONCLUSION

The autotools suite (autoconf, autoheader, libtool) is
very powerful. A lot of knowledge about compilers and
operating systems is embedded in the tools. Libtool makes
it very easy to build libraries cleanly and properly.

However, we note that the autotools suite is sometimes
too smart. For instance, the generated Makefiles will re-
configure and even attempt to rerun the bootstrap steps if
the timestamps on the source files change. This is good for
development work, but can be a problem if a user inadver-
tently changes the timestamps.

Also, there are a lot of assumptions about compiler flags
and compile and link commands built directly into libtool.
This is usually good, but sometimes causes a problem on
a specific compiler and operating system combination. For

instance, versions of libtool prior to 1.9b do not support CC
5.4 on Solaris.

Despite occasional frustration, the autotools suite has
been very useful for CLHEP.

ACKNOWLEDGEMENTS
I wish to thank Walter Brown for substantial help with

the design of the autotools scripts. In addition, I wish to
thank Andreas Pfeiffer for help making CLHEP work with
various operating systems and compilers, and for present-
ing this talk.

REFERENCES
[1] http://savannah.cern.ch/projects/clhep

[2] http://www.thep.lu.se/ThePEG/

[3] http://proj-clhep.web.cern.ch/proj-clhep/Workshop-
2003/main.html

[4] http://www.gnu.org/software/autoconf/

[5] http://www.gnu.org/software/automake/

[6] http://www.gnu.org/software/libtool/

